An application of the Lovász-Schrijver M(K, K) operator to the stable set problem

نویسندگان

  • Monia Giandomenico
  • Adam N. Letchford
  • Fabrizio Rossi
  • Stefano Smriglio
چکیده

Although the lift-and-project operators of Lovász and Schrijver have been the subject of intense study, their M(K , K ) operator has received little attention. We consider an application of this operator to the stable set problem. We begin with an initial linear programming (LP) relaxation consisting of clique and non-negativity inequalities, and then apply the operator to obtain a stronger extended LP relaxation. We discuss theoretical properties of the resulting relaxation, describe the issues that must be overcome to obtain an effective practical implementation, and give extensive computational results. Remarkably, the upper bounds obtained are sometimes stronger than those obtained with semidefinite programming techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lovász-Schrijver SDP-operator and a superclass of near-perfect graphs

We study the Lovász-Schrijver SDP-operator applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the SDP-operator generates the stable set polytope in one step has been open since 1990. In an earlier publication, we named these graphs N+-perfect. In the current contribution, we propose a conjecture on combinatorial...

متن کامل

A new lift-and-project operator

In this paper, we analyze the strength of split cuts in a lift-and-project framework. We first observe that the Lovász-Schrijver and Sherali-Adams lift-and-project operator hierarchies can be viewed as applying specific 0-1 split cuts to an appropriate extended formulation and demonstrate how to strengthen these hierarchies using additional split cuts. More precisely, we define a new operator t...

متن کامل

Some advances on Lovász-Schrijver semidefinite programming relaxations of the fractional stable set polytope

We study Lovász and Schrijver’s hieararchy of relaxations based on positive semidefiniteness constraints derived from the fractional stable set polytope. We show that there are graphsG for which a single application of the underlying operator, N+, to the fractional stable set polytope gives a nonpolyhedral convex relaxation of the stable set polytope. We also show that none of the current best ...

متن کامل

Lovász-Schrijver SDP-operator, near-perfect graphs and near-bipartite graphs

We study the Lovász-Schrijver lift-and-project operator (LS+) based on the cone of symmetric, positive semidefinite matrices, applied to the fractional stable set polytope of graphs. The problem of obtaining a combinatorial characterization of graphs for which the LS+-operator generates the stable set polytope in one step has been open since 1990. We call these graphs LS+-perfect. In the curren...

متن کامل

Vertex Cover Resists SDPs Tightened by Local Hypermetric Inequalities

We consider the standard semidefinite programming (SDP) relaxation for the vertex cover problem to which all hypermetric inequalities supported on at most k vertices are added and show that the integrality gap for such SDPs remains 2− o(1) even for k = O( √ logn/ log log n). This extends results by Kleinberg-Goemans, Charikar and Hatami et al. who considered vertex cover SDPs tightened using th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2009